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There has been some debate recently on whether the far-wake structure downstream 
of a cylinder is dependent on, or ‘connected’ with, the precise details of the near-wake 
structure. Indeed, it has previously been suggested that the far-wake scale and 
frequency are unconnected with those of the near wake. In the present paper, we 
demonstrate that both the far-wake scale and frequency are dependent on the near 
wake. Surprisingly, the characteristic that actually forges a ‘connection ’ between the 
near and far wakes is the sensitivity to free-stream disturbances. It is these disturbances 
that are also responsible for the regular three-dimensional patterns that may be 
visualized. Observations of a regular ‘honeycomb ’-like three-dimensional pattern in 
the far wake is found to be caused by an interaction between oblique shedding waves 
from upstream and large-scale two-dimensional waves, amplified from the free-stream 
disturbances. The symmetry and spanwise wavelength of Cimbala, Nagib & Roshko’s 
(1988) three-dimensional pattern are precisely consistent with such wave interactions. 
In the presence of parallel shedding, the lack of a honeycomb pattern shows that such 
a three-dimensional pattern is clearly dependent on upstream oblique vortex shedding. 

With the deductions above as a starting point, we describe a new mechanism for the 
resonance of oblique waves, as follows. In the case of two-dimensional waves, 
corresponding to a very small spectral peak in the free stream cfT) interacting 
(quadratically) with the oblique shedding waves frequency (f,), it appears that the 
most amplified or resonant frequency in the far wake is a combination frequency 
f F w  = cf, -fT), which corresponds physically with ‘ oblique resonance waves’ at a 
large oblique angle. The large scatter in c f F W / f K )  from previous studies is principally 
caused by the broad response of the far wake to a range of free-stream spectral peaks 
cf,). We present clear visualization of the oblique wave phenomenon, coupled with 
velocity measurements which demonstrate that the secondary oblique wave energy can 
far exceed the secondary two-dimensional wave energy by up to two orders of 
magnitude. Further experiments show that, in the absence of an influential free-stream 
spectral peak, the far wake does not resonate, but instead has a low-amplitude broad 
spectral response. The present phenomena are due to nonlinear instabilities in the far 
wake, and are not related to vortex pairing. There would appear to be distinct 
differences between this oblique wave resonance and the subharmonic resonances that 
have been previously studied in channel flow, boundary layers, mixing layers and 
airfoil wakes. 

1. Introduction 
Although there has been a large number of investigations concerned with the near 

wake behind a body, there are relatively few papers whose focus has been to study the 
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FIGURE 1. The development of a secondary vortex street in the far wake. This visualization sequence 
of an evolving secondary street was taken from a small water towing tank, in which aluminium flakes 
were homogenously distributed. A light sheet is used to provide a cross-sectional view of the vortex 
structures. The flow features may be interpreted as the instantaneous structures (unlike the case with 
dye or smoke) because the flakes are homogenously distributed and align themselves with the 
instantaneous stream surfaces. The primary vortex street in (a) diffuses as it travels downstream in 
(b) and (c). In (d) ,  the secondary street is evident, and there is no remaining visual evidence of the 
primary street. 
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structure of far wakes. One of the central questions is whether there is a connection 
between the flow and vortex dynamics right behind a body (in the near wake) and the 
structure that is found far downstream of a body (in the far wake). In other words, one 
might question whether the far wake retains a ‘signature’ of the near-wake dynamics. 
Of direct relevance to this question is the extent to which background noise (such as 
in a free stream) influences the development of the far wake, possibly to camouflage the 
vortical structure that would occur ‘naturally’. In the present paper, we address these 
fundamental questions, by studying in particular the development of the wake behind 
a nominally two-dimensional body, in this case a long cylinder. This work has been 
made possible by a recent understanding of three-dimensional effects in the near wake, 
in particular the influence of end (spanwise) boundary conditions on such flows, and 
it has been triggered by some simple observations in a wind tunnel. 

It has been shown by Roshko (1954) that there exist three regimes of flow at low to 
moderate Reynolds numbers (Re), namely the laminar, transition and irregular 
(turbulent) regimes, each of which occurs within certain ranges of Re. The transition 
regime is associated with the inception of small-scale structure (Hama 1959; Gerrard 
1978). Recent studies by Williamson (1988b, 1991, 1992a) show that the transition 
regime (roughly Re = 18&260) involves not only small-scale streamwise vortex 
structures and vortex loops, but also massive spot-like structures caused by ‘vortex 
dislocations’ and which form when there is a phase discontinuity in the vortex 
shedding. However, three-dimensionality is also a central feature of the laminar regime 
at lower Reynolds numbers in both the near wake and far wake. Loosely defined, the 
near wake extends for a few diameters downstream of the body in the region where the 
vortices roll up and shed, whereas the far wake defines a region where the velocity 
fluctuations are small, and extends up to several hundreds of diameters downstream. 
In both the laminar and turbulent wake regimes, the width of a nominally two- 
dimensional far wake grows as xi, for large values of downstream distance (x), and we 
thus expect the size of the far-wake structures to increase, while the passage frequency 
of these structures should decrease. 

Some original observations by Taneda (1959) demonstrated the decay of the original 
Karman street wake and the growth in the far wake of a secondary vortex-street 
structure of larger scale and lower frequency. The development of such a secondary 
vortex street is shown in figure 1, taken from a small towing tank (by the first author 
at Caltech in 1985) in which aluminium flakes were homogenously distributed within 
the fluid. The primary vortex street in (a) diffuses as it travels downstream in (b) and 
(c). In (d) ,  the secondary street is evident, and there is no remaining visual evidence of 
the primary street. Taneda suggested that such a far-wake periodic structure (which 
scales approximately on the local wake width) arises out of a hydrodynamic instability 
based on the local mean velocity profile. The ratios for the wavelength of downstream 
structure to upstream structure were found to range from 1.8 to 3.6. In contrast to this 
view of hydrodynamic instability, a different interpretation of the growth of the far 
wake was then put forward by Matsui & Okude (1981, 1983). They suggested that the 
secondary street is generated by vortex amalgamations or pairing of the original 
Karman vortices into larger vortical structures. Support for this argument comes from 
flow visualizations which show blobs of smoke formed by the upstream individual 
vortices pairing up further downstream, although it was stated that not all of the 
vortices paired up with each other. The above two interpretations for the growth of the 
far-wake secondary structure were later summarized by Cimbala, Nagib & Roshko 
(1 988) as follows : 

(a)  Hydrodynamic instability of the local mean velocity projile in the far wake. This 
instability mechanism is responsible for the growth of a secondary structure, and is 
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independent of the vortices shed from the body. The secondary street does not directly 
result from vortex amalgamations (pairing), although vortex pairing might occur 
incidentally. 

(b) Discrete vortex interactions (vortex pairing). In this mechanism it is supposed 
that the secondary large-scale street is formed by amalgamation of primary Kirman 
street vortices into larger vortical structures. 

Support for the pairing or vortex amalgamation mechanism might be inferred from 
other shear flows, for example the mixing layer, where the work of Brown & Roshko 
(1974) and Winant & Browand (1974) demonstrated that pairing and discrete vortex 
amalgamations is an essential aspect of shear-layer growth. It may also be shown from 
stability analysis of point vortex configurations that a single row of vortices (Lamb 
1932) as well as an infinite vortex street configuration (Saffman & Schatzman 1982) is 
most unstable to a pairing instability. A more recent study by Meiburg (1987) suggests, 
from numerical computation of fundamental and subharmonic perturbations imposed 
on two vorticity layers, that vortex pairing is able to account for the growth of a 
secondary vortex street. He also showed that, without a fixed phase relation between 
the subharmonics developing in each vorticity layer, one may not necessarily expect the 
pairing process to be reflected by a spectral peak precisely at :fK (where fK is the 
Khrman shedding frequency) although peaks close to this value would occur, which is 
consistent with the experiments of Cimbala (1984). 

An incisive experimental study by Cimbala (1984), and by Cimbala, Nagib & 
Roshko (1981, 1988) suggested that the far-wake structure does not depend directly on 
the scale or frequency of Karman vortices shed from the cylinder, and correspondingly 
that the growth of the secondary structure is due to hydrodynamic instability of the 
developing mean wake profile. The facts that frequencies unrelated to the Karman 
shedding frequency cf,) were amplified in the far wake, and that they were close to 
those frequencies predicted from stability analysis, strongly suggest that hydrodynamic 
instability is the principal mechanism for secondary street growth. It should be noted 
that it is difficult to choose a particular single frequency to represent the far wake, since 
a broad band of frequencies are selectively amplified and then damped, and the centre 
of the band shifts to lower frequencies, as the flow travels downstream. 

Further related studies by Desruelle (1983) and by Cimbala & Krein (1990) 
demonstrate the strong sensitivity of the far wake to external noise. Desruelle 
acoustically forced the wake using a speaker and, of direct relevance to the present 
work, he found that often the principal response occurred at the combination 
frequency (& - fT)  rather than at the imposed frequency cfT) itself. A similar response 
of combination frequencies was found by Cimbala & Krein when they deliberately 
interfered with the spectral peaks in the free-stream spectrum. The significant 
receptivity of the far wake to the intricacies of the low-turbulence free-stream spectrum 
is consistent with the far-wake growth being due to hydrodynamic instability. 

A further major contribution from the work of Cimbala (1984) and Cimbala et al. 
(1988) comes from planview (spanwise) flow visualization, which showed, for the first 
time, a ‘ honeycomb-like’ cellular three-dimensional pattern in the far wake (see our 
figure 4). They suggested that this cellular three-dimensional pattern could be caused 
by a secondary three-dimensional parametric instability of the subharmonic type 
acting on the far-wake initially two-dimensional waves, in analogy with subharmonic 
resonances found in mixing layers (Pierrehumbert & Widnall 1982) and in boundary 
layers (Herbert 1988). With regard to this honeycomb pattern, it was later stated by 
Coles (1985) that further study of this phenomenon in the wake should be classified as 
‘urgent unfinished business ’, particularly since it has relevance to three-dimensional 
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structure in other shear flows. An explanation of this phenomenon is a central part of 
the present work. 

Investigations which involve forcing three-dimensional structure in far wakes have 
been undertaken by Lasheras & Meiburg (1990) and by Corke, Krull & Ghassemi 
(1992). Lasheras & Meiburg carried out a combined numerical-experimental study on 
an unseparated wake, where they induced both two-dimensional waves and also pairs 
of (equal and opposite) subharmonic oblique waves in the computations. The evolving 
three-dimensional structures (in planview) show a marked similarity with the pictures 
of Cimbala et al. Corke et al. (1992) have also forced two-dimensional waves 
simultaneously with three-dimensional subharmonic oblique wave pairs in the 
unseparated wake from a symmetric airfoil (using a mosaic of computer-controlled 
piezoelectric transducers), and found that indeed a parametric resonance can exist. 
(This work is related to the original ‘triad’ resonance in boundary layers introduced 
by Craik (1971) and which, in that case, required the two-dimensional and three- 
dimensional subharmonic waves to be eigensolutions of the Orr-Sommerfeld 
equations.) In agreement with the analysis of Flemming for the same perturbed flow, 
they showed that there exists a threshold amplitude for the two-dimensional waves 
above which the subharmonic three-dimensional resonance will occur. Similar studies 
by Corke (1993), with oblique wave pairs that are not the subharmonic of the two- 
dimensional wave, show that ‘ generations’ of combination frequencies are amplified as 
the flow travels downstream. 

A new understanding of some near-wake three-dimensionalities is now altering our 
interpretations offar-wake phenomena. In the near wake, it has recently been shown 
that oblique shedding (where vortices are shed at some angle to the cylinder axis) is 
caused by influences from the end boundary conditions, for cylinders of even hundreds 
of diameters in length, but that with suitable manipulation of the end conditions, 
parallel (two-dimensional) shedding may be induced (Williamson, 1988 a, 1989 a ;  
Eisenlohr & Eckelmann 1989; Koenig, Eisenlohr & Eckelmann 1990; Hammache & 
Gharib 1989, 1991). Of significance to the present study is the fact that the shedding 
frequency is reduced as the oblique angle of shedding (0) is increased. It was suggested 
in Williamson (1991) that there is a direct link between the near-wake phenomenon of 
oblique shedding and the far-wake honeycomb pattern of Cimbala et al. (1988). It was 
observed that, if there is oblique shedding, then the downstream structure involves the 
evolution of what appeared to be oblique instability waves at an angle typically around 
twice the original oblique shedding angle, and with the same orientation. It was 
suggested that the origin of the oblique disturbances in the far wake is an interaction 
between the oblique shedding from upstream with two-dimensional waves from 
downstream. These simple conclusions are confirmed by the present investigation. 

The present work was triggered at Cornell from an undergraduate research project 
in 1990 undertaken by Kristen Gledhill, who set up a new smoke wire visualization 
system in our wind tunnel. By viewing a cylinder wake in planview, we immediately 
demonstrated inadvertently but rather clearly the three-dimensional honeycomb 
patterns discussed above. It was clear that in our facility the pattern was the direct 
result of an interaction between oblique shedding vortices and parallel (two- 
dimensional) large-scale waves which grew in the far wake. With parallel shedding 
upstream, we found no honeycomb pattern downstream. These preliminary results 
were presented by Williamson at the ONR Wakes Workshops in 1991, 1992 and in 
Williamson (1992b). It was also shown that the pattern originally observed by Cimbala 
et al. (1988) is indeed the same phenomenon. Simple geometrical relationships for the 
relevant angles and wavelengths for the interacting wave pattern show that the 
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spanwise wavelength of the honeycomb pattern is equal to the spanwise wavelength of 
the oblique shedding vortices, and that the geometry of the honeycomb pattern is 
obviously influenced by the angle of oblique shedding. These simple results, which 
appear in Williamson & Prasad (1993a), form the starting point for the present 
investigation. 

It should be mentioned that important results of Hammache & Gharib pertaining to 
the far wake were also presented at the above Workshops and in Hammache (1991), 
and Hammache & Gharib (1992). In agreement with the conclusions of Cimbala et al. 
(1988), they state that no direct relationship should be expected between the 
frequencies in the primary and secondary regions. Indeed, they find that, past the 
region of decay of the Karman street, the secondary vortices are parallel (two- 
dimensional) irrespective of whether there is oblique shedding or parallel shedding 
upstream and, correspondingly, the far-wake frequency is found to be independent of 
the Kannan frequency. If there is oblique shedding upstream, a spanwise waviness 
exists on the parallel far-wake waves. Some careful measurements at different spanwise 
locations demonstrate clearly that the spanwise wavelength of the downstream pattern 
is equal to the spanwise wavelength of the oblique shedding vortices. This constitutes 
a ‘connection’ between the near and far wake. Both of these conclusions are in 
complete agreement with our own work. 

We present here in figure 2 a compilation of previous and present data for the ratio 
of far-wake frequency to near-wake frequency CfFw/fK), over a range of Re. It can be 
seen that there exists a great deal of scatter. Although some of this scatter may be 
caused by differences in oblique shedding angle (and thereby frequency fK) as suggested 
by Hammache & Gharib, the wide disparities may be due also to other effects. This is 
one of a number of questions that are addressed in the present work. A central question 
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is whether the far wake can, in fact, be connected to the near-wake structure both in 
scale andfrequency. Secondly, it is of interest to investigate further the two mechanisms 
for secondary wake growth, namely hydrodynamic instability or vortex amalgamation. 
Thirdly, there is the question of the origin of the honeycomb-like three-dimensional 
pattern of Cimbala et al. in the far wake. Although it is reasonably clear from simple 
observation of their visualization that such a pattern is caused by parallel and oblique 
waves interacting, one might ask from where these waves originate? Finally, a further 
significant question can be posed : Are the combination frequencies discussed earlier 
indicative of some physical structure (i.e. waves)? It will be seen that the answer to this 
final question is at the heart of this paper. 

In $ 3, we shall demonstrate that the honeycomb three-dimensional pattern in the far 
wake is caused by an interaction between two wave systems: the oblique shedding 
waves from upstream and the parallel (two-dimensional) large-scale waves which 
become amplified in the far wake. Measurements of frequency in $4 show that, in our 
flow, there is a combination-frequency response in the far wake equal to cfK-fT),  
where c fK)  is the Kirman frequency and ( f T )  is a constant frequency associated with 
the free-stream noise. Thus the far-wake frequency as well as the scale are ‘connected’ 
to the near wake. It is shown in $ 5 that the frequency (f,) corresponds to parallel (two- 
dimensional) waves in the far wake. A significant result is that the combination 
frequency dfK-fT) corresponds to an ‘oblique resonance wave’ of large angle. The 
initial interaction of two waves of small amplitude leads to the resonance of a third one, 
whose amplitude may exceed the first two by an order of magnitude. In $7, we show 
that two modes of oblique wave resonance can exist, depending on whether cf,/f,) is 
greater or less than f.  Experiments with a smaller cylinder in $8 enable us to investigate 
the far wake under conditions of very low free-stream noise, where no resonances are 
found. In $9, we show, using Cimbala et al.’s (1988) stability calculations, that the 
oblique wave resonance occurs when the oblique waves curve in the cf, Re)-plane falls 
within the unstable region defined by the neutral stability curve. We study the cause of 
the small spectral peak cfT) in the free stream in $10, followed by discussion and 
conclusions. 

2. Experimental details 
Measurements of velocity fluctuations were made with a miniature hot wire situated 

in the wake of a cylinder of diameter 0.001 08 m, in a 0.305 m square test section 
(12 in. x 12 in.) of an open-circuit suction wind tunnel. The turbulence level was close 
to 0.08 YO, with flow uniformity better than 0.3 YO. A good deal of effort was taken to 
isolate the cylinder from the tunnel, and to damp out any cylinder vibrations. Flow 
visualization was conducted using a smoke wire system, in the manner originally 
described by Corke et al. (1977). 

The origin of the wake coordinate system is fixed on the axis of the cylinder. The x- 
axis is downstream, the y-axis is perpendicular (defined as transverse) to the flow 
direction and to the cylinder axis, and the z-axis lies along the axis of the cylinder 
(defined as spanwise). 

3. Origin of the honeycomb-like three-dimensional pattern in the far wake 
The present investigation was triggered principally by some smoke-wire vis- 

ualizations shown in figure 3. In this case, a smoke wire is placed upstream of the 
cylinder (vertical line at the extreme left) and the oblique shedding vortices are shown 
as the set of white lines at some oblique angle to the vertical cylinder. At a certain point 
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FIGURE 3. Demonstration of a direct link between the honeycomb-like pattern and the existence of 
oblique vortex shedding. The far-wake honeycomb pattern is caused by the interaction of oblique 
shedding waves with large-scale parallel (two-dimensional) waves in the far wake. The angle of 
oblique shedding influences the structure of the honeycomb pattern as shown in (a) and (b), most 
obviously the spanwise wavelength, which is precisely equal to the spanwise wavelength of the oblique 
vortices. If there is parallel shedding in (c ) ,  then there is no honeycomb pattern in the far wake. 

downstream (the flow travels to the right), it can be seen clearly that the oblique 
vortices become deformed by two-dimensional waves to yield a honeycomb-like 
pattern in the far wake. From (a)  and (b) it can be seen that the geometry of the 
honeycomb pattern is obviously influenced by the oblique shedding angle. It is 
straightforward to demonstrate, from the geometry of the intersecting wave pattern, 
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that the spanwise wavelength of the honeycomb pattern A,, is equal to the spanwise 
wavelength of the oblique shedding vortices, A,, : 

A,, = A,, = h,/tan0,, (1) 
where A, is the streamwise wavelength of the oblique shedding vortices and OK is the 
oblique shedding angle. Therefore as the shedding angle (0,) is reduced in (b), relative 
to (a), so the honeycomb spanwise wavelength (AZH) increases. Of particular 
significance is the fact that, in the presence of parallel shedding in (c), the evident lack 
of a honeycomb three-dimensional pattern shows that the pattern here is clearly 
dependent on the oblique vortex shedding. 

A natural question at this point is whether the honeycomb pattern of Cimbala et al. 
(1988) is caused by the same wave interactions. In order to address this question, we 
show, in figure 4, the three-dimensional pattern observed by Cimbala et al. (from their 
figure 19c) in the lower photograph in (b), as well as our own visualization above in 
(a). In the top photograph, if we draw a white line through the honeycomb pattern at 
the oblique shedding angle of 22", it clearly passes through a line of symmetry of the 
honeycomb pattern, a result which is not unexpected. We similarly draw a white line 
through the honeycomb pattern of Cimbala et al. in the photograph below, in this case 
at their oblique shedding angle (measured as 14' from their corresponding figure 19a). 
Again, we find that it represents the same line of symmetry in their three-dimensional 
pattern as it does in our visualization. A further measurement of spanwise wave- 
length for their honeycomb pattern gives ( A Z H / A K )  = 4.1, while a measurement of 
spanwise wavelength for their oblique shedding vortices (their figure 19 a) yields 
( A Z H / A K )  = tan-l(l4") = 4.0, which shows that A,, = hZK, to the accuracy of 
measurement. There would seem little question, from the above evidence, that the 
honeycomb pattern of Cimbala et al. is caused by the same wave interaction 
phenomenon as found in the present study, namely their oblique shedding waves 
interacting with growing two-dimensional waves in the far wake. 

It would appear that these results show, in a most straightforward manner, that the 
far-wake honeycomb pattern is triggered by a hydrodynamic instability of large-scale 
parallel (two-dimensional) waves, rather than by vortex pairing, in agreement with the 
already extensive evidence presented in Cimbala et al. The basis of this statement lies 
in the fact that the evolving large-scale waves of the far wake are two-dimensional, 
while the shedding vortices are oblique. If vortex pairing were the main mechanism for 
far-wake growth, then one would expect the oblique vortices to pair along their length 
at an oblique angle, which has not been observed in the far wake. However, this does 
not preclude the far-wake frequency being (coincidentally) a subharmonic of the near- 
wake frequency. 

Although it was hitherto believed that there was no direct connection between near 
and far wakes, the straightforward observations shown here demonstrate that the near 
and far wakes are indeed directly connected. It will be demonstrated in the following 
section that the far-wake frequencies can also be directly influenced by the near-wake 
Kirman frequency. 

4. Measurements of frequency in the far wake 
Measurements of frequency in the far wake (f,,) over a range of Reynolds number, 

presented in figure 5 (a), show that the predominant peak in the spectrum, in our 
experiments, corresponds to a combination frequency : 

f F W  = f K - f T ,  (2) 
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FIGURE 4. Demonstration that the honeycomb pattern of Cimbala et al. (1988) is caused by oblique 
shedding waves interacting with far-wake two-dimensional waves. Oblique vortices may be seen in (a) 
(our visualization) being deformed by two-dimensional waves in the far wake, as they travel to the 
right. The oblique shedding angle is drawn as the white line in the honeycomb pattern, and it can be 
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where f, is the Karman frequency upstream, andf, represents a surprisingly small 
peak that we have found to be associated with the free stream in our tunnel. (We shall 
show later that (uims/U) = 0.00005 for the frequencyf,.) In other words, the far-wake 
frequency has a constant difference off, (= 159 Hz) from the shedding frequency, as 
shown in (a). This phenomenon is in accordance with the results of Cimbala & Krein 
(1990), who demonstrated an extreme sensitivity of the far wake to even very small 
disturbances in the free stream. In their case, the far wake was rather more 
complicated, owing to the presence of a whole group of small peaks in the free-stream 
spectrum. 

Since the far-wake frequency corresponds to fFw = cf,-f,), one can see that 
changes in the upstream shedding frequency f,, at a given Reynolds number, will alter 
f,,. This means that the far-wake frequency is affected by whether there is parallel or 
oblique shedding upstream, sincef, is a function of oblique shedding angle. The 
frequency measurements in figure 5(b) show that indeed this is the case, and from (2) 
the differences in far-wake frequency for oblique or parallel shedding are equal to the 
differences in upstream frequency. We can make an estimate of the differences in the 
ratio Cf,,/f,) that can be attributed to whether the shedding is parallel or oblique, as 
follows : 

(3) 
where cf,) is the parallel shedding frequency, cf0) is the oblique shedding frequency, 
and 0 is the oblique shedding angle. In this expression, we have made use of the cos 8 
transformation relating f, and fe found in Williamson (1988a, 1 9 8 9 ~ ) .  For typical 
oblique angles of around 0 = 15", the ratio cf,,/fK) will vary by up to 4 % depending 
on whether the shedding angle is parallel or oblique. We see in figure 2 that the scatter 
in previously measured values for (f,,/f,) can be of the order of 50%, so that 
variations in oblique shedding angle alone cannot explain the discrepancies. 

It appears that it is the extreme sensitivity of the far wake to the free-stream spectral 
peaks that causes the large scatter in previous measurements of (&+,IfK). If there are 
small free-stream peaks at various values of normalized (f,/f,) in other facilities, then 
combination (or possibly direct) response frequencies in the far wake given by 

would cause a significant variation, sufficient to explain the large scatter in the 
literature in figure 2. We shall demonstrate a broad receptivity to different values of 
( f,/f,) in Williamson & Prasad (1993 b), and also show in 9 11 that the data of Matsui 
& Okude (1983) correspond to a combination-frequency response of the far wake. 

A significant fundamental question remains at this point: Does the existence of a 
combination frequency reflect the presence of any physical structure in the flow (i.e. 
waves)? This question is addressed directly in the following section. 

A(f,,/f,) = c f , - f s > / f o  = 1 --os 6, 

f F W / f K  = I - f T / f K  (4) 

5. Oblique wave resonance in the far wake 
In the flow visualization shown earlier, one can observe large-scale parallel (two- 

dimensional) waves in the far wake, whereas the predominant frequency in the far 
wake (as measured above) is the combination frequency cf, -f,). We initially assumed 
that these two-dimensional waves corresponded with that combination frequency. 

seen that it represents a line of symmetry in this pattern. The honeycomb pattern observed by 
Cimbala et al. (1988) shown in (b) demonstrates that their oblique shedding angle (14') represents the 
same line of symmetry in their pattern. 
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FIGURE 5. Measurement of normalized far-wake frequency versus Re. In (a), we show that there is 
a constant frequency difference (J,,) between the near-wake frequency (J,=) and the far-wake 
frequency Cf,,). This demonstrates the response of the far wake to a combination frequency 
f,, = (f,-f,). In (b), we show the small differences in far-wake frequency caused by whether the 
shedding upstream is parallel or oblique. 

However, further visualization showed that the wavelength of the two-dimensional 
waves increases with Reynolds number, as shown in the photographs of figure 6 .  By 
visually measuring these wavelengths (A) ,  we were further able to show that the 
wavelength of these parallel waves is proportional to Reynolds number, as seen in the 
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FIGURE 6. Observations and measurements of wavelength for two-dimensional waves in the far wake, 
versus Re. The linear relationship between the normalized wavelength (h /D)  and Reynolds number 
(Re) is demonstrated. 

plot of figure 6. It is then reasonable to conclude that the parallel waves correspond to 
a constant frequency. It can be shown that 

Re = (gradient of plot) x Re, 

where Uw is the phase speed of the waves, U ,  is the free-stream velocity, D is the 
cylinder diameter, and v is the kinematic viscosity. If we assume for the moment that 
the constant frequency in the above expression is indeed fT = 159 Hz, then using the 
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value for the least-squares gradient of the plot, we find that the normalized phase speed 
for the waves becomes (U,/U,)  = 0.93. This is consistent with the phase velocity 
(U,/U,)  = 0.92 for two-dimensional (parallel) waves found in the far wake of a 
symmetric airfoil by Corke et al. (1992). It appears from the above that the parallel 
waves are indeed associated with the frequency f T .  Following this conclusion, one 
might question what should be seen in visualizations that would correspond to the 
combination frequency Cf' -fT). 

It seems established from analytical investigations of boundary layers and other 
flows (for example Raetz 1959, Stuart 1962 and Craik 1985) that the nonlinear 
interaction of two waves can lead to other waves at sum and difference (combination) 
frequencies that can, under some circumstances, become amplified to comparable or 
greater amplitudes than the original waves, in a form of resonance. For such 
resonance, it is required that the two waves travel at the same phase speed (i.e. become 
phase-locked). Let us consider the following two waves : 

3 (6)  a ei(al z+B1 z - q  t )  

(7) a ei(a2 x+Bz z-wz t )  

With such a two-wave interaction, one may expect quadratic terms of order (a') to 
appear, i.e. terms formed by products of the above waves and their complex conjugates 
(but not necessarily to resonate), for example, (a, a,), (a ,  a:), etc. The second of these 
nonlinear terms, involving the difference frequency (w, - w,), would directly relate to 
the present problem. Let us denote this third wave corresponding to (a,& as 

3 (8) a z+p3z-w, t )  

where the following relationship may be written : 
w3 = w,  - w,, (9) 
P 3  = P,-Pz, (10) 
a3 = al -a,. (1 1) 

A resonance exists if such a relationship between three waves holds true, and this is 
what is present in our flow. For our system of waves, subscript 1 refers to the Karman 
oblique shedding waves, which we shall henceforth denote with subscript K.  The other 
wave system with subscript 2 refers to the large-scale two-dimensional waves, now 
denoted with subscript T. The two interaction waves (a: a,) and (a: a,*) correspond to 
negative frequencies in our problem, and the wave (a, a,) corresponds to a frequency 
CfK+fT), which would be linearly damped even more than the decaying Karmin 
waves. This leaves us with only (a, a,*). If the difference frequency is denoted f,,, then 

1 

2 

3 

(9) becomes 

We can then look to the other two relations for the geometry of the wave 
corresponding to this frequency. If the spanwise wavelength of the combination wave 
is written as A,, and the spanwise wavelength for the oblique shedding wave as hZK, 
(10) gives (with PT = 0) 

which can, in any case, be seen immediately from the geometry, and was discussed for 
the honeycomb pattern in the Introduction. Referring now to the streamwise 
wavelength of the combination wave as Asl, (1 1) gives 

(13) hZ, AZK, 
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FIGURE 7. Diagram showing that oblique resonance waves join nodes formed by the interaction 
of oblique shedding waves and two-dimensional waves. 

The angle of the combination wave 8, (angle measured relative to the two-dimensional 
wave) can be found, using (13), as 

tan8, he, 
tan8, A,' 

- 

Before connecting the above ideas with possible observation of waves at the 
combination frequency, we shall discuss how different waves might be formed in this 
wake flow. As the primary oblique shedding vortices (waves) travel downstream (to the 
right in figures 3 and 4) so they become deformed by the large-scale parallel waves. As 
this deformation grows, parts of the oblique shedding waves align themselves along a 
line of symmetry in the pattern to form a new set of large-scale large-angle oblique 
waves. This picture of the deformations assumes that the original oblique lines 
remaining in the far wake correspond to some residual non-negligable fluctuations of 
the oblique shedding waves (which is supported by our later spectral measurements 
and by data of Matsui & Okude 1983). 

From the geometry of this problem given by the equations above, and shown in 
figure 7, we can see that these large-angle oblique waves correspond simply to the lines 
joining the nodes of the intersection pattern formed by the original two sets of waves. 
If these combination waves at frequency f,, = ( f K  - fT )  are the most amplified waves 
in the far wake (in preference to the parallel waves at least over some downstream 
region), then we should expect the frequency&, to correspond to an 'oblique wave 
resonance ' which should be observed in flow visualization. 

In the experiment, the observation of such oblique resonance waves initially proved 
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FIGURE 8. Visualization of two-dimensional waves with a spanwise waviness in the far wake, showing 
the waves at 120 Hz that are due to contamination from our smoke wire AC-DC rectifier. A spanwise 
waviness on the two-dimensional waves develops downstream due to interaction with the oblique 
shedding waves from upstream. 

difficult, although a fleeting observation on one roll of film had been made at the 
earliest point in our studies. The reason for our difficulties turned out to be the fact that 
the smoke wire current was provided by an AC-DC Converter, which retained some 
small residual AC current. By spectral analysis of the far wake with the smoke wire 
turned on, we discovered that the far wake was contaminated or 'overpowered' with 
the smoke wire frequency at 120 Hz. We present, in figure 8, a typical example of 
smoke visualization at y / D  = 2.0, and x / D  = 100, with the original AC-DC rectifier. 
It should first be noted that the principal waves are parallel, not oblique, and secondly 
that a spanwise waviness develops, due to the interaction with upstream oblique 
shedding waves. Thirdly, one may observe that the far-wake spanwise wavelength is 
equal to the oblique-shedding spanwise wavelength. 

With installation of a true DC Power supply, we were able to show immediately a 
strong and remarkably clear oblique wave resonance in the far wake, as shown in figure 
9, and which was the cause of some excitement. The smoke wire has been placed 
downstream at x / D  = 100, and the oblique wave angle, in this particular case, is 
around 26", which is coincidentally around twice the angle of oblique shedding of 14". 

There remains the possibility that these waves are some artifact of the visualization 
technique. Such a possibility was made clear in the careful work of Cimbala et al. 
(1988), who demonstrated that the visualization is highly dependent on where the 
smoke is introduced into the flow. In figure 10, the smoke wire has been placed at 
different downstream locations, and at a constant y / D  = 2. If the smoke wire is 
upstream, we see first the oblique shedding vortices, and further downstream the 
two-dimensional waves are evident. Based on this picture, one might infer no oblique 
wave resonance, due to the streakline 'history' effect. However, by placing the smoke 
wire further downstream at x / D  = 50, one can now interpret the downstream structure 
as possibly oblique. When the smoke wire is at x / D  = 150, there is no question that the 
far-wake structures are oblique resonance waves. It is clear that the streakline history 
effect discussed by Cimbala et al. is camouflaging the oblique wave resonance when the 
smoke wire is upstream. The dependence of transverse smoke wire location was also 
investigated in figure 11, from which we can clearly see the oblique waves when the 
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FIGURE 10. Influence of downstream smoke-wire location on oblique-two-dimensional wave 
interpretation. In the top photograph, with the smoke wire upstream of the cylinder, it appears that 
the downstream waves are only two-dimensional, due to the streakline history effect. In the middle 
picture, one can now interpret the downstream structure as possibly oblique. In the last picture, with 
the smoke wire at x / D  = 150, there is no question that the far-wake structures are oblique resonance 
waves. y / D  = 2.0 for all photographs. 

smoke wire is placed at different y / D  across the whole wake. One may conclude from 
the above that the oblique wave resonance is not an artifact of the flow visualization 
technique. 

Measurements of the wavelengths and wave angles made from the visualization 
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FIGURE 11. Influence of lateral location of smoke wire on oblique wave interpretation. We 
demonstrate that oblique resonance waves are visualized at all values of y / D .  The smoke wire is 
downstream at x / D  = 100. 
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FIGURE 12. Measurements of oblique wave geometry. In (a), the measurements show that two- 
dimensional and oblique waves have equal phase speeds. In (b), measurements of oblique wave angles 
are compared with (predictions based on) equation (15), where eK has been taken as 14" over the 
range of Reynolds number. 

pictures are shown in figure 12. For resonance to occur in the manner described from 
the above equations, the phase speed of the three waves must be equal 

Although it seemed evident from the pictures that the pattern remained phase-locked 
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FIGURE 13. Free-stream velocity spectrum (Re = 150). The fluctuations at the frequency 159 Hz are 
given by (uims/U) = 0.00005, which provides a surprisingly small energy sufficient to trigger the 
oblique wave resonance. 

as it travelled downstream, it was decided to measure the ratio of (h,/hol) as a function 
of frequency ratio ( f o l / f T ) .  The plot in figure 12(a), showing that the two ratios are 
equal, demonstrates that the phase speeds of the waves are equal as given in equation 
(I 6). Phase-locking was also demonstrated in the three-wave subharmonic interactions 
of Corke et al. (1992), for perturbation amplitude of the two-dimensional waves above 
a certain threshold. 

The measurements of oblique resonance wave angle 8, in figure 12(b) show a good 
agreement with predictions based on equation (15). In this case, for simplicity, the 
oblique shedding angle 0, = 14" has been assumed to be constant over the range of 
Reynolds number. The observed range of (f,/fK) in the plot is made possible by a 
variation in Re over the range 100-160. The plot demonstrates that one may expect 
oblique resonance for surprisingly large wave angles of at least 50" to the two- 
dimensional wave. Oblique wave resonance was not evident for Reynolds numbers 
below about 100; indeed it was difficult to detect any significant far-wake response at 
Re much below 90-100. 

6. Downstream development of velocity fluctuations 
It is clear from this investigation, and from the work of Cimbala & Krein (1990), that 

the far wake is extremely sensitive to the background noise in the free stream. The far 
wake locks onto combination frequencies of the spectral peaks in the free stream. The 
free-stream spectrum in the present wind tunnel is shown in figure 13, for a flow speed 
corresponding to Re = 150. The peak at 159 Hz is close enough to the Karman 
shedding frequency at 355 Hz to cause the kind of interference leading to oblique wave 
resonance, although it should nevertheless be realized that the energy at this fluctuation 
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FIGURE 14. Development of velocity spectra downstream (Re = 150). The spectral peak at’(fK-fT) 
in the far wake is the dominant peak, until around x / D  = 300, when the peak at cf,) becomes 
comparable. 

peak is remarkably low, giving a value of ( u ~ , , / V )  = 0.00005. One may note for 
comparison that the near-wake fluctuation levels are of order (uims/U) = 0.20. 

Downstream developments of velocity spectra for Re = 150 are shown in figure 14. 
The energy of the oblique resonance waves (f,-f,) exceeds that for the oblique 
shedding waves (f,) at around x / D  = 90, and is much larger by x / D  = 150. It should 
be noted that, under these particular conditions, the energy for the parallel waves (f,) 
also grows downstream to be comparable to the oblique resonance waves (f,,) around 
x / D  > 300. We might expect this to occur becausef, <fsl, and the band of amplified 
frequencies would be expected to shift to lower frequencies as the wake progresses 
downstream, as indicated by Cimbala et al. (1988). Also noticeable in the spectra at 
x / D  = 150 and 300 is a peak at 2&, which is the harmonic of the oblique resonance 
wave, and a further peak at the combination frequency (f, - 2f,) which will be shown 
in Williamson & Prasad (1993 b) to represent a further oblique resonance mode. 



A new mechanism for oblique wave resonance 29 1 

Oblique wave resonance I oblique + 2D 

0 
0 

f I 1 I I 

50 100 150 200 250 300 
xlD 

FIGURE 15. Development of velocity fluctuations downstream (Re = 150). The downstream distance 
in the visualization is to-scale with the measurements below. The smoke wire was placed at 
x / D  = 50, in order to show all three sets of waves. The measurements of (u imS/U)  show the 
exponential decay of Karman vortices, the growth of oblique resonance waves, and further 
downstream a comparable mix of two-dimensional and oblique waves (comprising a honeycomb 
pattern). 

Corresponding flow visualization and fluctuation measurements are shown (to the 
same x / D  scale) in figure 15. These velocity r.m.s. measurements were obtained from 
the maximum value found across the wake noted from an RMS voltmeter, so there is 
no preference for any specific frequency. The smoke wire is situated at x / D  = 50 in 
order to show all three sets of waves in one picture. The oblique shedding vortices may 
be seen giving way to the oblique resonance waves as one moves downstream to the 
right. There is a region of interaction further downstream, involving both the oblique 
resonance waves and the large-scale two-dimensional waves, and so a honeycomb 
pattern is observed. The observations are reflected also in the measurements. 

At this point, we introduce in figure 16 some precise definitions regarding the near 
and far wakes. The near wake is defined as the region of growing velocity fluctuations, 
until reaching a peak at what is commonly known as the formation length, X,. In this 
study, we shall define the far wake as the region downstream of the point at which the 

12-2 
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FIGURE 16. Definition of downstream wake regions: the far wake is defined as the region downstream 
of the position (X,,) where the fluctuations from the decaying Kirmin vortices and the growing far- 
wake waves are equal. 

decaying energy of the shed vortices is equal to the growing energy of the amplified 
modes in the far wake, which will be called the far-wake distance, X,,. The 
intermediate region, which is characterized by the exponential decay of the shed 
vortices, is defined as the middle wake. This far-wake distance defines a point at which 
one may compare fluctuation energy for different conditions. In figure 17(a), the far- 
wake distance X,, is shown to decrease as Reynolds number increases, in roughly a 
1/Re dependence. The strength of the fluctuations at this characteristic point in (b) 
increases with Reynolds number. These characteristic values will be used for 
comparison with different experimental conditions in 9 8.  

7. Modes of oblique wave resonance 
A revealing plot of the far-wake frequencies is shown as the normalized frequency 

df / fK)  versus Re in figure 18. In this plot it can be seen that for all the laminar regime 
down to near Re = 90, the data fall on the oblique resonance curve, given by 
(1--fT/fK). It should be noted that this plot is specific to the particular frequency 
corresponding to (fT D2/u)  = 12.0. Of particular significance is that the wake frequency 
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FIGURE 17. Measurements of (a) normalized far-wake distance (x /D) , ,  and (b) velocity fluctuations 
at (x /D) , ,  in, versus Re. Solid symbols are for oblique shedding, and open symbols are for parallel 
shedding. The circles refer to the large cylinder, and the triangles refer to the small cylinder. 

response follows the oblique waves curve, even when the oblique and two-dimensional 
frequencies are closely comparable near Re = 134, at which point fT/fK = $. There is 
clearly a preferential amplification of oblique resonance waves over the two- 
dimensional waves throughout the range of wake response. 

The plot in figure 18 shows that the oblique wave frequency CfeJ is greater than the 
two-dimensional wave frequency (fT) for Re > 134, orfT/fK < i. This suggests that, if 
there is initially a preferential oblique wave amplification, then further downstream, as 
the receptivity of the wake shifts to lower values of frequency, the two-dimensional 
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FIGURE 18. Normalized far-wake frequency ( f l f , )  versus Re : preferential amplification of oblique 
waves. The two-dimensional waves curve and oblique waves curve are drawn using (f, D 2 / v )  = 12.0. 

waves may become amplified also. On the other hand for f T / f K  > j, if the oblique 
waves are preferentially amplified initially, then one may not expect the two- 
dimensional waves of higher frequency to amplify or become comparable further 
downstream. There are thus two possible modes of oblique waves resonance, in this 
case, as follows: 

Oblique mode : f 0 1  < f T ,  f T / f K  > $2 Re < 134 
Oblique-Two-dimensional mode: fo l  > f,, f T / f K  < f, Re > 134. 

The example discussed in the previous section for Re = 150 corresponds to fel. > f T ,  
and therefore to the Oblique-Two-dimensional mode, resulting in a combination of 
waves as for the ‘honeycomb’ pattern. In the present section, we present evidence of 
the Oblique mode, commencing with the spectral development in figure 19. In this case 
Re = 120, corresponding to f,, < f T ,  and it is clear that, although the parallel waves 
cf,) are involved in triggering the oblique wave resonance at around x / D  = 100, they 
are lost in the background noise at x / D  = 300, whereas the oblique waves c f K  -fT) are 
still relatively energetic. Measurements of velocity fluctuation in figure 20 demonstrate 
similarly the exponential decay of Karman waves, the small growth and decay of the 
parallel waves (fT), and the relatively much larger amplification of oblique resonance 
waves ( f K - f T ) .  There is no appearance of comparable parallel waves further 
downstream, in this instance. Visualization in figure 21, where the smoke is introduced 
at x / D  = 100, shows the two modes, depending on whether Re 5 134. 

8. Experiments with a smaller cylinder: very low free-stream interference 
The results to this point demonstrate not only the phenomenon of oblique wave 

resonance, but also an extreme sensitivity of the far wake to any small peaks in the free- 
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FIGURE 19. Development of spectra downstream, Re = 120: oblique resonance mode. In this case the 
oblique resonance waves at frequency v;, -f,) remain far more energetic than the two-dimensional 
waves cf,), which do not appear further downstream. 

stream spectrum. The response of the far wake is dependent on the frequency as well 
as the amplitude of any background noise. In this section, we shall investigate 
experimental conditions for which the noise not only has less amplitude, but where the 
frequency peak Cf,) is placed an order of magnitude away from the typical Karmin 
shedding frequency ( f K ) .  In this way, one would be likely to avoid interference from 
both the direct frequency Cf,) and the combination frequency ( fK- fT ) .  For this 
purpose, a smaller cylinder of 0.53 mm diameter was used, so that the shedding 
frequency would be typically over four times higher than for the original cylinder. The 
following data for the two cylinders relate to conditions at Re = 150: 

Larger cylinder (D = 1.08 mm) (u: , , /U)~~ = 0.005% f, is around 0.5fK, 

Smaller cylinder (D = 0.53 mm) ( u ~ , , / U ) ~ ~  = 0.003% f ,  is around 0.1 f K .  
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FIGURE 20. Development of velocity fluctuations downstream, Re = 120: oblique resonance mode. 
As shown in the spectra, the oblique resonance waves at frequency (f,-f,) remain far more energetic 
than the two-dimensional waves cf,). Oblique waves only are observed in the visualizations. 

Measurements of the free-stream spectrum for the small cylinder demonstrated an 
extremely low level of noise, and absence of any peaks in the vicinity of the shedding 
frequency. The central question is now: what happens to the far-wake wave 
interactions if the free-stream noise frequency is far from the Karman shedding 
frequency ? 

The spectra for the smaller cylinder presented in figure 22 show a much lower wake 
response relative to the larger cylinder wake. This is made very clear if one compares 
the response for Re = 120 at x / D  = 150 with figure 19, and also the response for 
Re = 150 at x / D  = 150 with figure 14. The character of the far-wake spectral response 
is also of a broadband nature with no predominant peaks. 

An interesting result appears when one plots the normalized far-wake frequency 
( f F w / f K )  versus Re, in figure 23. The curves for two-dimensional waves (f,) and 
oblique wave resonance ( f K - f T )  have been drawn in the figure (corresponding, in this 
case, to (f, D 2 / v )  = 3.0). The measured wake response frequencies were evaluated as 
the maximum of a broad region of spectral response, rather than any specific peak, and 
were found using a polynomial fit through this region. It appears that the response 
frequency is close to the subharmonic ( f F w / f K )  = :, which is markedly different from 
the far-wake resonance of the large cylinder. It would be tempting to suggest that, 
without some resonance with a particular frequency in the free stream, the wake prefers 
the + subharmonic. Whether this is perhaps a coincidence, or whether it provides 
evidence for a vortex pairing phenomenon are obvious questions, and are pursued in 
$11. 

The downstream development of velocity fluctuations for the small cylinder are 
shown in figure 24, for Re = 120 and 150, and it is seen that there is a drastic reduction 
in far-wake response compared to the large cylinder shown in figures 15 and 20, and 
overlaid as the curves in this figure. There is at least a factor of 10 reduction in far-wake 
fluctuations for Re = 150, and a factor of 100 in the case of Re = 120. Following the 
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FIGURE 21. Visualisation of the two modes of oblique wave resonance, when f,/f, 5 a. In this 
case, the two modes are found for Re 2 134. The photographs extend from x / D  = 100 to 320. 
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FIGURE 22. Development of the spectrum downstream for the small-cylinder wake, Re = 120 and 150. 
This non-resonant response in the far wake is broad and low amplitude, and may be contrasted with 
the larger spectral peaks in the resonant wake of the larger cylinder. 

earlier definition of far-wake distance, this characteristic length versus Re has been 
plotted for the small cylinder wake in figure 17 earlier, demonstrating the much larger 
distance ( X / D ) ~ ~ ,  and the much lower fluctuations (u&/ vFw at this characteristic 
point for the small cylinder wake as compared with the large cylinder wake. Finally, 
some flow visualization at Re = 150 in figure 25, using smoke introduced at x / D  = 100 
and y / D  = 1.5, demonstrates the remnants of the oblique shedding waves at the left, 
and very little structure at all in the far wake. This suggests that the regular patterns 
observed up to now in far wakes (honeycomb pattern and oblique or two-dimensional 
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FIGURE 23. Normalized far-wake frequency u/fx) versus Re: no amplification of oblique waves. 
The two-dimensional-waves curve and oblique-waves curve are drawn using (J, D 2 / v )  = 3.0. 

wave patterns) are indicative of a response to specific frequency peaks in the free- 
stream spectrum. 

9. Comparison with predictions from linear stability analysis 
Although the oblique wave resonance is a nonlinear phenomenon, it is nevertheless 

possible to make some useful comparisons between the present phenomena and 
predictions based on linear stability analysis. Cimbala (1984) and Cimbala et al. (1988) 
conducted a comparison of measured far-wake frequencies with those frequencies 
predicted on the basis of spatial inviscid linear stability of a parallel Gaussian wake 
profile. We shall show, for the same Re = 150, that our far-wake velocity profiles are 
closely similar to those measured by Cimbala et al., and subsequently we will utilize 
their theory to compare with some of the present results. 

We have found a very reasonable agreement of the mean velocity profiles with a 
Gaussian form, for downstream positions extending from around x / D  = 20 to beyond 
x / D  = 300. In such a profile, a normalized wake velocity defect may be given by 

where U, is the centreline velocity. A normalized transverse distance can be given as 
y* = y/6, where 6 is the wake half-width defined by that value of y for which 
U* = 0.5. The downstream development of both the normalized maximum velocity 
defect Wo/U, = (U ,  - Uo)/U,  and also the wake width S/D are plotted in figure 26 
for Re = 150, and are compared with the results of Cimbala (1984). The agreement in 
both cases was considered sufficiently close to enable us to use the stability analysis 
mentioned above. Regarding the plots, it is interesting to note that the wake defect 
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FIGURE 24. Development of velocity fluctuations downstream for the small cylinder. (a) Re = 120; (b )  
150. The data for the small-cylinder wake are compared with the much greater fluctuations of the 
larger-cylinder wake. 

( W,/ U,) increases for a surprisingly large distance downstream (up to x / D  = SO), and 
the expected asymptotic decay following an x-i law cannot be reasonably applied until 
beyond x / D  = 100. The varying rate of increase of wake width S is a characteristic that 
was observed by Cimbala and also by Corke et al. (1992), and is possibly related with 
the decay and growth of different modes. 

Profiles of velocity fluctuation at different downstream stations in figure 27 
demonstrate that the oblique-wave fluctuations in the far wake exceed the two- 
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FIGURE 25. Visualization of far wake of the small cylinder, Re = 150. This photograph does not 
show any clear structure in the far wake. The oblique shedding waves are seen to the left. 

dimensional wave fluctuations across the complete wake profile (distinctly so at x / D  
= 150), which further confirms the existence of the oblique wave resonance. However, 
it can be seen that for this Oblique-Two-dimensional Mode c fT/ fK <;), the 
fluctuations for the two sets of waves becomes more comparable further downstream 
at x / D  = 250. It should be noted that for x / D  = 150 and 250, the profile for negative 
y is the mirror of that for positive y ,  because there existed a distinct repeatable 
asymmetry in the measurements. It seemed that, since the larger peak was always on 
the left side of the plot (to the measurement accuracy) for a whole set of downstream 
locations, the probe crossing the wake centreline affected this sensitive measurement, 
in agreement with Desruelle (1983). 

A comparison of measured and predicted frequencies in the far wake is presented in 
figure 28. The stability curves in this figure are as drawn by Cimbala et al. (1988). The 
‘neutral’ curve defines those frequencies below it as unstable. There is a further curve 
defining frequencies with the ‘maximum growth’ rate, based on a local wake-profile 
analysis. The solid curve defines a predicted prominent frequency, using a locally 
parallel scheme, but which takes into account the integrated growth of disturbances 
with downstream distance. For the large cylinder in (a), the predominant frequency 
falls in steps from the Karman frequency (fK) to the oblique resonance frequency 
cf, - fT), and then to the parallel waves frequency ( fT) near x / D  = 300. Like Cimbala 
et al., the energy at a given frequency grows until it reaches the neutral curve, after 
which it decays and a further lower frequency takes over as the most amplified one, 
thus there are growth and decay cycles for different frequencies. The frequencies for the 
small cylinder in (b)  do not exhibit pronounced step changes as for the resonant wake 
in (a), and seem to drop in a more continuous fashion. Frequencies, in the resonant and 
non-resonant cases, fall in the region between the predicted curve and the neutral 
stability curve, which is consistent with Cimbala et al. 

The incidence of resonance or non-resonance is also consistent with predictions 
based on the linear theory. In figure 29, we show the normalized frequency (f,,/f,) 
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FIGURE 26. Downstream development of normalized wake defect ( W,/ V )  in (a), and normalized 
wake half-width (6/D), Re = 150: 0,  present data; 0, Cimbala (1984). 

versus Re, for both cylinders. In these figures are drawn the curves corresponding to 
the oblique or two-dimensional waves, and also curves deduced from the stability 
calculations. The neutral and maximum-growth curves have been found using the 
curves of growth rate versus /3 = 27cif/U, in figure 12 of Cimbala et al., which are a 
function of the defect velocity W,/U,. In order to find a reasonable characteristic point 
in the far wake to conduct stability calculations over a range of Re, it seems reasonable 
to select the far-wake distance ( x / D ) ~ ~  for the large and small cylinder wakes (figure 
17). The data of Desruelle (1983) for (Wo/Uw)Fw, corresponding to these values of 
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FIGURE 28. Measured and predicted far-wake frequencies versus x / D ,  Re = 150. The curves are from 
the linear stability analysis of Cimbala et al. (1988). The solid symbols refer to a frequency whose 
energy is growing with respect to downstream distance, while the open symbols refer to decaying 
waves. 

( X / D ) ~ ~ ,  are used to interpolate values for p from the curves of Cimbala et al. The data 
lor ,Y, and the data lor (B/u) , ,  also trom uesruelle, as well as present measurements 
of Strouhal number S,, are then used in the equation 
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FIGURE 29. Measured and predicted normalized frequencies Cflf,) versus Re. The experimental data 
are compared with a neutral stability curve and a maximum growth rate curve, based on local 
calculations at the far-wake distance XFw. (a) Wake for large cylinder, (b) wake for small cylinder. 

to yield the normalized frequencies corresponding to neutral or maximum growth rate, 
for a range of Re, shown in figure 29. These results are also shown in table 1. The main 
point to be made, from figure 29, is that for the resonant wake in (a), the oblique waves 
curve falls inside the region of linear instability in the u, Re)-plane, whereas for the 
non-resonant wake in (b), the oblique-waves curve falls well outside the region of 
instability. In the latter case, the two-dimensional waves curve is far below the region 
of strong far-wake response (except perhaps very far downstream). 

Finally, given the sensitivity of the far wake to free-stream spectral peaks, one can 
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FIGURE 30. Regions for oblique wave resonance modes in the ( f T ,  &)-plane. 

Re (x/D)F, ( W J u m ) p w  (J/D)Fw Pmax Pneutral S K  U / f J m a x  (f/fx)neutra, 

Resonant wake (large cylinder) 
80 250 0.236 3.21 0.74 1.36 0.1532 0.239 0.440 

120 138 0.21 1 1.90 0.75 1.39 0.1741 0.361 0.670 
155 88 0.343 1.39 0.71 1.26 0.1852 0.439 0.779 

Non-resonant wake (small cylinder) 
80 250 0.236 3.21 0.74 1.36 0.1532 0.239 0.440 

120 193 0.18 2.25 0.756 1.42 0.1741 0.307 0.577 
155 141 0.26 1.70 0.732 1.34 0.1852 0.370 0.677 

TABLE 1. Calculation of frequencies for neutral stability and maximum growth rate 

plot a map of oblique wave resonance in the (f,, Re) plane, as shown in figure 30. The 
shaded areas denote resonance of different modes, as described in $7, whereas the 
unshaded areas indicate no resonance. The lines f, = f, and f, = i f K  are the upper 
limits for the resonances, while the lower limits are dictated by when the oblique 
resonance curve falls above the neutral stability curve in figure 29(a). In essence, this 
map indicates where one may expect to observe different modes of resonance in 
different facilities or environments, depending on the value of any free-stream spectral 
peaks f,. 

10. Source of free-stream tunnel noise at f, 
It would seem difficult, without special precautions, to obtain a free-stream spectrum 

devoid of any very small spectral peaks whatsoever. In our own arrangement, it was 
felt important to investigate the source of the spectral peak atf, = 159 Hz, and we set 
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up a small microphone facing upstream in the test section. By tapping on different parts 
of the wind tunnel, we attempted to isolate the source of the 159 Hz, and concluded 
that it did not originate from the wind tunnel itself. However, this does not exclude an 
amplification of some external frequency by the acoustic response of the test section 
itself. By simply removing the microphone from the test section and moving it around 
the laboratory, the source was ultimately discovered as a surprisingly small noise 
emanating from a ‘muffin’ fan cooling some auxiliary electronics, about 3 m away 
from the test section. (The actual audible noise can be imagined to be comparable with 
the sound of a modern reasonably quiet overhead projector.) An amplification by the 
test section itself gave a spectral peak for the velocity fluctuations just sufficient to 
cause resonance in the receptive far wake. (A rough calculation of organ pipe 
frequency for the test section gives 139 Hz assuming one end open, or 279 Hz assuming 
both ends open, indicating an acoustic receptivity of the test section to frequencies of 
this order.) It seems that the acoustic disturbances cause an oscillation of the fluid 
relative to the body, causing very small two-dimensional waves to ‘ride’ on the initial 
Karman vortex wake, and then to become a trigger for far-wake response. The fact that 
two-dimensional waves are generated in far wakes may, perhaps in most cases, be 
attributed to acoustic forcing at the body rather than to the natural selection from 
broad-spectrum disturbances in the far wake. It may also be concluded that far-wake 
studies are highly sensitive to sources of noise within a laboratory which may include, 
for example, people talking and background music. 

11. Discussion and interpretation of previous results 
11.1. Principal mechanism for the generation of a secondary vortex street 

The present work demonstrates that the far wake has an extreme sensitivity to the free- 
stream spectrum, in agreement with the studies by Cimbala & Krein (1990) and 
Desruelle (1983). This would perhaps suggest of itself that the primary cause of 
secondary street growth comes from the hydrodynamic instability of the far wake, 
rather than vortex pairing, as discussed in the Introduction. In this section, we shall 
further discuss the evidence to support one or the other hypothesis for far-wake 
growth. 

In figure 3 1, we have assembled previous measurements of the far-wake normalized 
wavelength (AFW/&) versus Re. In this plot, in some cases, the wavelength ratio has 
been inferred from frequency measurements, assuming phase-locking of the wake 
structures. Aside from the obvious scatter amongst investigators, there is generally a 
similar trend from the different studies, and it is one which would suggest a 
combination-frequency type of resonance, as found in the present work. Assuming 
phase-locking of the far-wake structure, one may write 

so that as Re reduces, f , / fK  will increase, and A F W / A K  will increase. The trend of the 
previous studies is thus consistent with the existence of a far-wake response to free- 
stream spectral peaks. In order to further confirm the above suggestions, we have taken 
a set of data for the far-wake frequency from Matsui & Okude (1981) for their 1.2 mrn 
cylinder, and have replotted it as normalized frequency ( f / f K )  versus Re, in figure 32. 
There is a remarkable agreement of their data with a curve representing a combination 
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FIGURE 3 I .  Scatter in measurements of normalized far-wake wavelength (AFw/AK) versus Re. 
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FIGURE 32. Replot of Matsui & Okude (1981) data (0) as normalized frequency (flf,) versus Re. 
Data for their 1.2 mm cylinder are used. The plot demonstrates that they had a tunnel interference 
frequency off, D 2 / v  = 13.8. 

frequency response cf, -fT),  for the particular case of (fT P / v )  = 13.8. This seems to 
be convincing evidence to show that their far wake is responding to a spectral peak of 
constant frequency in the free stream, and has no particular tendency for the $ 
subharmonic, despite the fact that vortex pairing was the main conclusion from their 
study. In the work of Matsui & Okude, vortex pairing was observed in visualizations, 
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although in this case they chose Re = 140, which corresponds to f F w / f K  = 0.45. This 
is close to the f subharmonic, and would yield pairing over a proportion of the cycles. 
It appears that pairing in their case is an incidental phenomenon, and the principal 
mechanism for secondary street growth is the hydrodynamic instability of the far wake 
responding to the free-stream spectrum, as in the present work. 

The present wake response for the non-resonant case (the small cylinder wake) yields 
values of frequency reasonably close to the f subharmonic, from which it would be 
tempting to suggest again that vortex pairing is the driving mechanism for far-wake 
growth. However, the stability calculations of Cimbala et al. would also suggest far- 
wake frequencies in the vicinity of the : subharmonic. The most convincing point is 
perhaps the fact that the upstream shedding is oblique whereas the downstream waves 
are initially two-dimensional, so that vortex pairing cannot possibly be the principal 
cause of far-wake growth. 

11.2. ‘Connection ’ between near wake and far wake 
It was suggested in the work of Cimbala et al. that the far-wake three-dimensional 
pattern may reflect the presence of a secondary parametric instability of the 
subharmonic type acting on the far-wake initially two-dimensional structures. 
Consistent with this possibility is their suggestion that the far-wake structure does not 
depend directly on the scale or frequency of Karman vortices shed from the cylinder. 
More recently, a connection of spanwise lengthscale was demonstrated in Williamson 
& Prasad (1993a) and in Hammache & Gharib (1992). However, it is not possible to 
have a connection in scale without nonlinear wave interactions. As shown in this work, 
there is therefore a connection between the near- and far-wake frequencies, as well as 
the lengthscales. 

When the wake vortices shed parallel to the cylinder, there appears to be a 
combination-frequency resonance in the far wake, similar to that for oblique shedding. 
This similarity may be demonstrated from typical measurements of velocity 
fluctuations as a function of downstream distance, from the spectra, and from many 
other measurements like those made for this study, including the differences in 
phenomena between the small- and large-cylinder wakes. 

11.3. Wave interactions for parallel shedding 

11.4. Oblique wave resonance in other shear flows 
The problem of the far-wake development of an ‘unseparated’ wake from a splitter 
plate or from a symmetric airfoil has a close similarity with the present study. Lasheras 
& Meiburg (1990) studied the three-dimensional vorticity modes in the wake of a 
splitter plate, in a combined experimental-numerical investigation. By computing the 
flow with input disturbances comprising a two-dimensional wave and pairs of oblique 
subharmonic waves, they found striking similarities between their computed streakline 
three-dimensional pattern and the flow visualization of Cimbala et al. 

The present oblique wave resonance is similar to a combination-frequency resonance 
that is discussed in Raetz (1959) and in Stuart (1962). More recent experiments by 
Corke (1990) and analytical investigations by Mankbadi (1993) are also concerned 
with (combination-frequency) resonance between two- and three-dimensional waves in 
boundary-layer flows. These studies are related to the original ‘triad’ resonance 
introduced by Craik (1971), and which required the two- and three-dimensional 
subharmonic waves to be eigensolutions of the Orr-Sommerfeld equations. Corke 
(1990) investigated the effect of detuning the oblique pairs of waves away from the f- 



310 C. H. K.  Williamson and A .  Prasad 

subharmonic, and found that a family of combination frequencies appeared in an 
increasingly complex fashion as the flow developed. In the work of Mankbadi (1993), 
a critical-layer asymptotic analysis is given for the fully coupled interaction of 
frequency-detuned modes in a boundary layer. The analysis indicates that the 
interaction between a two-dimensional plane mode at frequency wl, and a pair of 
symmetrical oblique waves at near-subharmonic frequency (w1/2) (1 +A) amplifies 
another pair of symmetrical modes at what he terms a ‘mirror frequency’ 
( 4 2 )  (1 -A). The latter result is similar to the present work. If we denote the input 
oblique frequency as w2 = ( 4 2 )  (1 +A) and the mirror frequency as w3 = (wJ2) 
(1 -A), then we find w3 = w1 - w2. This third wave is thus a combination-frequency 
response as we find here for the wake resonance. In both cases, the combination 
frequency corresponds to oblique waves. 

There are clearly similarities between the present oblique wave resonance in the wake 
and the resonance studies for detuned subharmonics of Corke (1990) and Mankbadi 
(1993) for the boundary layer. However, there are distinct differences, as follows. In 
these other investigations, the fundamental is a parallel two-dimensional wave, and the 
near-subharmonic (larger wavelength) disturbance is a pair of symmetric oblique 
waves. In our case, the fundamental is instead a single oblique wave, while the larger- 
wavelength disturbance is a parallel wave. 

12. Conclusions 
This investigation demonstrates that the far wake has an extreme sensitivity to free- 

stream disturbances, and it is these disturbances that not only lead to a large scatter 
in previous wake measurements, but also are responsible for the three-dimensional 
regular patterns that may be visualized in the far wake. This sensitivity to disturbances 
makes it difficult to properly define a ‘natural’ wake, since its structure is exquisitely 
dependent on the environment in which it is studied. In analogy with the mixing layer, 
the ‘natural’ far wake is by nature an excited flow. 

Under certain conditions, the far wake exhibits a ‘ honeycomb’-like three- 
dimensional pattern, which in our flow is caused by an interaction of oblique shedding 
waves, generated upstream at the body, and larger-scale parallel (two-dimensional) 
waves which evolve in the far wake. The symmetry and spanwise wavelength of 
Cimbala et al.’s (1 988) three-dimensional pattern are precisely consistent with such 
wave interactions. With such interactions, the spanwise wavelength of the honeycomb 
pattern is equal to the spanwise wavelength of the oblique shedding waves, which is 
consistent with the recent measurements of Hammache & Gharib (1992). In the 
presence of parallel shedding at the body, the lack of a honeycomb pattern shows that 
such a three-dimensional pattern is clearly dependent on the upstream oblique vortex 
shedding. 

It has been suggested previously that the far-wake structure does not depend directly 
on the scale or frequency of the Kirman vortices shed from the cylinder. Our work 
demonstrates that not only the scale but also the near-wake frequency c f K )  can directly 
injluence the fur wake. Surprisingly, the characteristic that forges this ‘connection ’ 
between the near and far wake is the sensitivity to free-stream disturbances. Even for 
a very small spectral peak (fT) in the free stream, it appears that the far wake is 
receptive to a combination-frequency response given by f,, = ( fK- fT ) .  The large 
scatter in ( f F w / f K )  amongst previous studies is principally caused by the broad 
response of the far wake to a range of free-stream spectral peaks ( f T ) ,  causing a 
significant variation in ( f F w / f K )  = 1 - cfT/ fK)  among different investigators. 



A new mechanism for  oblique wave resonance 311 

The combination-frequency response corresponds physically to an 'oblique wave 
resonance', as follows. The body generates oblique shedding vortices u,), which decay 
exponentially as they travel downstream. A very small spectral peak in the free stream 
cfT) is sufficient to trigger the growth of two-dimensional waves in the far wake. A 
quadratic nonlinear interaction between these two waves induces the rapid growth of 
the oblique resonance waves, at a frequency (f, - fT). Geometrically, the resonance 
waves correspond simply to lines that pass through the nodes formed by the 
intersection of the oblique shedding waves and the two-dimensional waves. One might 
argue that this phenomenon is an artifact of the smoke visualization technique, 
although measurements of velocity fluctuation for the oblique waves can be an order 
of magnitude larger than those for the two-dimensional waves. The oblique resonance 
is confirmed by placing the smoke wire at different locations downstream, as well as 
traversing the wire across the wake. 

It is found that there exist two modes of oblique wave resonance. In the 
Oblique-Two dimensional mode for (fT/f,) < a, there is a significant region of oblique 
wave resonance followed, further downstream, by a comparable amplification of two- 
dimensional waves in a ' honeycomb '-like three-dimensional pattern. In the Oblique 
mode for c fT / fK)  > f, there is a resonance of oblique waves with no comparable 
appearance of two-dimensional waves further downstream. 

Further experiments demonstrate that, in the absence of free-stream spectral peaks 
in the vicinity of the Kgrrnan shedding frequency or its subharmonic, the far wake will 
not resonate at a specific frequency, but will exhibit a broad frequency response at an 
energy level between 100-10000 times less than for a resonant wake. In this case, we 
observe no clear structure in the far wake. This further suggests that any regular far- 
wake three-dimensional pattern that may be observed in different facilities would be 
caused by some interaction of oblique shedding waves and free-stream-induced two- 
dimensional waves. 

Comparison of measured frequencies with those predicted by linear stability analysis 
(from Cimbala et al.) indicates that the prominent frequencies in the far wake lie 
between the predicted and neutrally stable frequencies. In the V; Re)-plane, it appears 
that it is necessary for the oblique-waves curve to lie within the region of linear 
instability defined by the neutral stability curve for resonance to occur in the far wake. 

The fact that the far-wake waves have a different angle to the primary waves 
indicates that vortex pairing cannot be the principal mechanism for secondary street 
development, when there is oblique shedding. It is further shown that the data of 
Matsui & Okude demonstrate clearly a combination-frequency resonance in the far 
wake, despite the fact that they interpreted their data in terms of a vortex pairing 
phenomenon. Indeed, it is possible to predict the frequency causing the resonance in 
their facility. 

The clear visualizations, in the present work, of this type of oblique resonance wave 
would appear to represent the first observations of such waves in a shear flow. There 
are basic differences between this resonance and the parametric subharmonic resonance 
normally induced in other shear flows, for example the channel flow, the boundary 
layer or the wake from an airfoil. In these other investigations, the fundamental is a 
two-dimensional wave, and the subharmonic secondary disturbance is a pair of 
symmetric oblique waves. In our case, the fundamental is instead a single oblique wave, 
while the larger-wavelength disturbance is a single two-dimensional wave. 
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